On the integrability of co-CR quaternionic structures

نویسندگان

  • Radu Pantilie
  • RADU PANTILIE
چکیده

We characterise the integrability of any co-CR quaternionic structure in terms of the curvature and a generalized torsion of the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the twistor space of a (co-)CR quaternionic manifold

We characterise, in the setting of the Kodaira–Spencer deformation theory, the twistor spaces of (co-)CR quaternionic manifolds. As an application, we prove that, locally, the leaf space of any nowhere zero quaternionic vector field on a quaternionic manifold is endowed with a natural co-CR quaternionic structure. Also, for any positive integers k and l, with kl even, we obtain the geometric ob...

متن کامل

About the geometry of almost para-quaternionic manifolds

We provide a general criteria for the integrability of the almost para-quaternionic structure of an almost para-quaternionic manifold (M,P) of dimension 4m ≥ 8 in terms of the integrability of two or three sections of the defining rank three vector bundle P. We relate it with the integrability of the canonical almost complex structure of the twistor space and with the integrability of the canon...

متن کامل

Harmonic space and quaternionic manifolds

We find a principle of harmonic analyticity underlying the quaternionic (quaternionKähler) geometry and solve the differential constraints which define this geometry. To this end the original 4n-dimensional quaternionic manifold is extended to a biharmonic space. The latter includes additional harmonic coordinates associated with both the tangent local Sp(1) group and an extra rigid SU(2) group...

متن کامل

2 6 A ug 2 00 5 SUBCOMPLEXES IN CURVED BGG – SEQUENCES

BGG–sequences offer a uniform construction for invariant differential operators for a large class of geometric structures called parabolic geometries. For locally flat geometries, the resulting sequences are complexes, but in general the compositions of the operators in such a sequence are nonzero. In this paper, we show that under appropriate torsion freeness and/or semi–flatness assumptions c...

متن کامل

Conformal Quaternionic Contact Curvature and the Local Sphere Theorem. La Courbure Conforme D’une Structure De Contact Quaternionienne Et Structures Localment Plates

A tensor invariant is defined on a quaternionic contact manifold in terms of the curvature and torsion of the Biquard connection involving derivatives up to third order of the contact form. This tensor, called quaternionic contact conformal curvature, is similar to the Weyl conformal curvature in Riemannian geometry and to the Chern-Moser tensor in CR geometry. It is shown that a quaternionic c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016